ANNEX 7: CONSIDERATIONS ON RECEIVER BLOCKING RESPONSE AND RECEIVER BLOCKING LEVEL

A7.1 PRELIMINARY

The blocking parameters of a standard are specified for specific values testing parameters which do not always correspond to typical operational values. In particular, blocking values in LTE standards are specified for desensitization values (e.g. 6 dB for BS, 13 dB for MS) which may not correspond to the desired operational value for specific studies (e.g. 1 dB for BS and 3 dB for MS). It is therefore sometimes necessary to translate the Blocking Level defined by the standard for a desensitization D_{STANDARD} into the corresponding Blocking Level for another desensitization D_{TARGET}.

The analysis in Section A7.3 is conducted for a standard that provides a maximum power (Blocking Level) of an interfering signal received outside of the in-band, for a given frequency offset between the wanted signal and the interfering signal. This absolute blocking level is specified in the standard for a specific desensitization $D_{STANDARD}$. This is the case for the narrowband blocking specifications in LTE standards (ETSI TS 136.101 and ETSI TS 136.104). It is also the case for the blocking specifications for the 4th adjacent channel and the following ones in GSM (ETSI TS 145.005).

The analysis in Section A7.4 is conducted for a standard that provides a protection ratio. This is the case for the blocking specifications for the first 3 adjacent channels in GSM (ETSI TS 145.005).

A7.2 DEFINITIONS

Abbreviation	Explanation		
Blocking Level	Maximum power (Maximum I_{OOB}) of an interfering signal outside of the in-band, for a given frequency offset between the wanted signal and the interfering signal, given in dBm		
Blocking Response	Receiver filter attenuation of signals outside of receiver's channel/band, given in dB. It is derived by the following equation: Blocking Response = $I_{IB} - I_{OOB}$		
C _{STANDARD}	Wanted signal level defined by the standard for the blocking specification		
D	Desensitization of the receiver in the presence of an interfering signal, given in dB. It corresponds to the 'noise rise' due to the interfering signal and is derived by the following equation in dB: $D = 10.\log 10[(10^{(N/10)} + 10^{(1_{B}/10)})] - N$		
D _{STANDARD}	Desensitization defined by the standard for the blocking specification		
D _{TARGET}	Target desensitization for a specific interference study		
I _{IB}	I _{OOB} in-band equivalent interfering signal		
I _{IB-STANDARD}	IOOB-STANDARD equivalent in-band interfering signal		
I _{IB-TARGET}	IOOB-TARGET equivalent in-band interfering signal		
I _{OOB}	Interfering signal at the RF input of a receiver, outside of the receiver's bandwidth.		
I _{OOB-STANDARD}	Allowed power of an interfering blocking signal as specified by the standard (for		
	D _{STANDARD}).		
I _{OOB-TARGET}	Allowed power of an interfering blocking signal for D _{TARGET} .		
Ν	Noise floor, given in dBm. N is derived from the following equation in dB: 10.log10(k.T.BW) + NF, where k = Boltzmann constant, T = 290 K, BW = Bandwidth, NF = Noise figure		
SENSITIVITY	Minimum power of the wanted signal defined by the standard for appropriate reception in the absence of interference		

C_{STANDARD} is referred to in different standards and documents as:

- Useful signal (ETSI TS 145.005 Chapters 5.1.2 and 5.1.3)
- Wanted signal mean power (ETSI TS 136.104 Table 7.5.1-1)
- Pw (ETSI TS 136.101 Table 7.6.3.1-1)
- Prefsens + desensitization (ETSI TS 136.104 Table 7.5.1-1, ETSI TS 136.101 Table 7.6.3.1-1)
 "C"

C_{STANDARD} is specified for a given sensitivity and a given desensitization.

I_{OOB-STANDARD} is referred to in different standards as:

- Blocking signal level (ETSI TS 145.005 Table 5.1-2a)
- Puw (ETSI TS 136.101 Table 7.6.3.1-1)
- Interfering signal mean power (ETSI TS 136.104 Table 7.5.1-1)

 $I_{OOB-STANDARD}$ is specified for a given frequency offset, a given sensitivity and a given desensitization $D_{STANDARD}$.

I_{OOB-TARGET} is derived for a given frequency offset, a given SENSITIVITY and a given desensitization D_{TARGET}.

SENSITIVITY is referred to in different standards as: *

- Reference sensitivity level (ETSI TS 145.005 Tables 6.2-1x),
- Reference sensitivity (ETSI TS 136.101 Table 7.3.1-1),
- Reference sensitivity power level (ETSI TS 136.104 Tables 7.2.1-1 and 7.2.1-2),
- Prefsens (ETSI TS 136.101 Table 7.3.1-1, ETSI TS 136.104 Tables 7.2.1-1 and 7.2.1-2).

A7.3 WHEN THE BLOCKING LEVEL (MAXIMUM IOOB) IS GIVEN BY THE STANDARDS

A7.3.1 Derivation of the Receiver Blocking Response

A7.3.1.1 Goal

When an interfering signal I_{OOB} is applied to the RF input of a receiver outside of the receiver's bandwidth, the receiver will be interfered due to the non-perfect selectivity of the receiver's filter. However, the receiver's filter attenuate the interfering signal I_{OOB} into an 'equivalent in-band interfering signal' I_{IB} . In other words, the performance of the receiver are left unchanged in presence of the interfering signal I_{OOB} at the given frequency offset, or in presence of the interfering signal I_{IB} .

The receiver Blocking Response is defined as the receiver filter attenuation of signals outside of receiver's channel/band (in dB):

Blocking Response = $I_{IB} - I_{OOB}$

The present section derives the receiver Blocking Response from the Blocking Level specified in the standard.

A7.3.1.2 Derivation

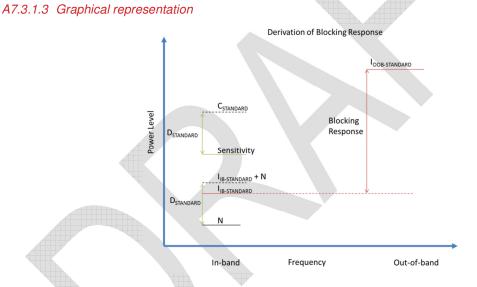
Starting from:

$$D_{\text{STANDARD}} = 10.\log 10[10^{(N/10)} + 10^{(I_{\text{IB-STANDARD}}/10)}] - N$$

I_{IB-STANDARD} can be then derived from the following equation in dB:

 $I_{IB-STANDARD} = N + 10.log10[10^{(D_{STANDARD}/10)} - 1]$

 $I_{IB-STANDARD} - N = 10.log10[10^{(D_{STANDARD}/10)} - 1]$


For example,

- For $D_{STANDARD} = 16 \text{ dB}$, $(I_{IB-STANDARD} N) = 15.9 \text{ dB}$ (ETSI TS 136.101 Table 7.6.3.1-1, Channel Bandwidth = 5 MHz).
- For D_{STANDARD} = 13 dB, (I_{IB-STANDARD} N) = 12.7 dB (ETSI TS 136.101 Table 7.6.3.1-1, Channel Bandwidth = 10MHz).
- For D_{STANDARD} = 6 dB, (I_{IB-STANDARD} N) = 4.7 dB (ETSI TS 136.104 Table 7.5.1-1, Wide Area BS and Local Area BS).
- For $D_{\text{STANDARD}} = 3 \text{ dB}$, $(I_{\text{IB-STANDARD}} N) = 0 \text{ dB}$ (ETSI TS 145.005 Chapters 5.1.2 and 5.1.3).

Blocking Response is then derived by the following equation:

Blocking Response = $I_{IB-STANDARD} - I_{OOB-STANDARD}$ = N + ($I_{IB-STANDARD} - N$) - $I_{OOB-STANDARD}$

= $N + 10.log10[10^{(D_{STANDARD}/10) - 1] - I_{OOB-STANDARD}$

Figure 5: Derivation of the Blocking Response from the Blocking Level specified by the standard

A7.3.2 Derivation of the receiver Blocking Level

A7.3.2.1 Goal

From the Blocking Response, it is possible to derive the receiver Blocking Level for another value of desensitization.

In order to derive this new receiver Blocking Level, we assume that the Blocking Response is constant and fully linear over the complete range of desensitization from 0 to $D_{STANDARD}$.

A7.3.2.2 Derivation

I_{IB-TARGET} can be derived from the following equation:

 $I_{IB-TARGET} = N + 10.log10[10^{(D_{TARGET}/10)} - 1]$

I_{OOB-TABGET} can be derived from the following equation:

```
I<sub>OOB-TARGET</sub> = I<sub>IB-TARGET</sub> - Blocking Response
```

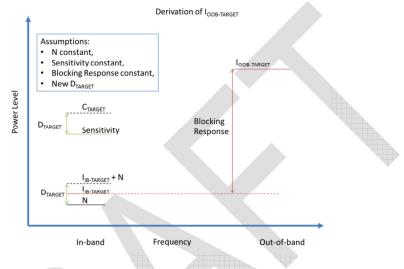



Figure 6: Derivation of the Blocking Level for a desired DTARGET

A7.4 WHEN A PROTECTION RATIO IS GIVEN BY THE STANDARDS

This is the case for GSM, with regards to the 3 first adjacent channels.

In ETSI TS 145.005, Table 6.3-1, the C_{STANDARD} - I_{OOB-STANDARD} is specified in dB for a desensitization D_{STANDARD} of 3 dB (see chapter 5.1.2 in ETSI TS 145 005).

- First adjacent channel, $[C/la1]_{Linear}^5 = C la1 = -9 dB$, Second adjacent channel, $[C/la2]_{Linear}^5 = C la2 = -41 dB$,
- Third adjacent channel, $[C/Ia3]_{\text{Linear}} = C Ia3 = -49 \text{ dB}$. These are the "blocking protection ratios".

A7.4.1 Derivation

Let's consider for instance a BS and the first adjacent channel.

 C_{STANDARD} SENSITIVITY + D_{STANDARD} -104 dBm + 3 dB -101 dBm

⁵ It should be noted that the standard refers to C/Ia which is an equation in the linear domain, but specifies the value in dB, i.e. in the logarithmic domain.

I _{OOB-STANDARD}	=	C _{STANDARD} - Blocking Protection Ratio
	=	-101 dBm - (-9 dB)
	=	-92 dBm
Blocking Response	=	N + 10.log10[10 ^{(D} _{STANDARD} /10) -1] - $I_{OOB-STANDARD}$
	=	-113 + 0 - (-92)
	=	-21 dB

The Receiver Blocking Level $I_{\text{OOB-TARGET}}$ for a desensitization D_{TARGET} of 1 dB can be derived from the following equation:

= $N + 10.log10[10^{(D_{TARGET}/10)} - 1] - Blocking Response$

 $\mathbf{I}_{\text{OOB-TARGET}}$

- = -113 6 + 21
- = -98 dBm